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Enhancing Chinese Character Representation With
Lattice-Aligned Attention

Shan Zhao , Minghao Hu , Zhiping Cai , Zhanjun Zhang, Tongqing Zhou , and Fang Liu , Member, IEEE

Abstract— Word–character lattice models have been proved to
be effective for some Chinese natural language processing (NLP)
tasks, in which word boundary information is fused into char-
acter sequences. However, due to the inherently unidirectional
sequential nature, prior approaches have only learned sequential
interactions of character–word instances but fail to capture
fine-grained correlations in word–character spaces. In this arti-
cle, we propose a lattice-aligned attention network (LAN) that
aims to model dense interactions over word–character lattice
structure for enhancing character representations. By carefully
combining cross-lattice module, gated word–character seman-
tic fusion unit, and self-lattice attention module, the network
can explicitly capture fine-grained correlations across different
spaces (e.g., word-to-character and character-to-character), thus
significantly improving model performance. Experimental results
on three Chinese NLP benchmark tasks demonstrate that LAN
obtains state-of-the-art results compared to several competitive
approaches.

Index Terms— Attention, Chinese, information extraction,
interactions, lattice.

I. INTRODUCTION

MANY Chinese information extraction tasks, including
Chinese word segmentation (CWS), Chinese named

entity recognition (NER), and Chinese relation extraction
(RE), require determining and categorizing word boundary,
which are fundamental tasks in the field of natural language
processing (NLP). These basic tasks have attracted increasing
attention due to their important role in many downstream
NLP tasks, such as knowledge base population [1]–[3] and
question answering [4], [5]. However, Chinese cannot use
explicit delimiters (e.g., white space) to separate words in
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written text, which is very different from the English writing
system.

Generally, there are two major methodologies for these
Chinese information extraction tasks: word-based models [6]–
[8] and character-based models [9]–[12]. The major disadvan-
tage of word-based models is that word information can be
utilized only for readily recognized words, namely those that
are already in the output candidates. Character-based models,
on the other hand, regard each input sentence as a character
sequence, which can naturally avoid word segmentation errors,
thus outperforming word-based methods. However, in most
cases, the semantic of a single Chinese character is ambiguous.
For example, the character “ ” in word “ (Handle)”
and “ (Director)” has entirely different meanings. More-
over, several recent works [13]–[16] have demonstrated that
integrating word information into character sequences via
word–character lattice structure can lead to better language
understanding and accordingly benefits various Chinese NLP
tasks. For example, Zhang and Yang [13] proposed a lattice
LSTM structure, which can utilize the words information in the
NER task. Yang et al. [16] extended the lattice LSTM struc-
ture using subword encoding in the CWS task. Li et al. [15]
introduced a multigrained lattice framework (MG lattice) for
Chinese RE task to take advantage of multigrained language
information.

Prior approaches mainly enhance character-level LSTM
encoder with a directed acyclic graph (DAG) structure by
adding word level as external knowledge, referred to as
word–character lattice LSTM structure. However, these lattice
methods can only learn sequential interactions of character–
word instances but fail to model dense interactions between
each character and each matched word for enhancing character
representations. Taking the sentence in Fig. 1(a) as an example,
the character “ (Capital)” has only access to its self-matched
words “ (Nanjing)” in the lattice LSTM. Yet, we argue
that it is beneficial for enhancing character representations
when the character “ (Capital)” can be aware of “ (City)”
being matched with “ (Nanjing City)”.

To address the above issue, we propose a lattice-aligned
attention network (LAN) for enhancing character represen-
tations. The key insight comes from multimodal learning
in computer vision [17], [18], where the character and
word sequences are viewed as two different modalities.
To model dense interactions over word–character lattice struc-
ture, we first design a cross-lattice attention module that aims
to capture fine-grained correlations between two input feature
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Fig. 1. (a) Example of the original lattice LSTM model [13]; (b) Soft-
lexicon strategy used [19]; (c) Dense interactions of lattice inputs in our model.
“BMESi” denotes the aligned word for the i th character. B , M, and E mean
all lexicon matched words on a sentence that begin, middle, and end with the
ith character, respectively. S is the single-character word. “none” denotes the
corresponding word set that is empty.

spaces. Then, we propose a gated fusion unit to dynamically
integrate character and word features. After that, we further
construct a self-lattice attention module that is capable of
building direct connections between two arbitrary characters
despite their distances. Given the word–character embeddings
and the aligned lattice structure, LAN first utilizes the cross-
lattice attention module to generate word-aware character
features and then adopts the gated fusion unit and self-lattice
attention module to combine character and word features,
eventually obtaining self-aware character features. In this way,
our network can fully capture dense interactions over word–
character lattice structure, thus providing a rich semantic
feature for enhancing character representations.

Finally, we conducted extensive experiments on three Chi-
nese NLP tasks, including CWS, Chinese NER, and Chinese
RE, and nine public benchmark datasets to evaluate the
proposed model. Experimental results show that LAN can
achieve the state-of-the-art performance compared to a variety
of competitive approaches.

II. RELATED WORK

A. Word–Character Lattice Structure

Lattice RNNs have been first used to model speech tokeniza-
tion lattice [12], [20] and multigranularity segmentation for

NMT [21]. Then, since word sequence information is poten-
tially useful for character-based sequence learning, Zhang
and Yang [13] proposed a lattice LSTM model to explicitly
leverage word boundary information, in which matched lexical
words are encoded into character sequences with a DAG
structure. Lattice LSTM model has outperformed both word-
and character-based approaches by a large margin on the
Chinese NER task. Later, Yang et al. [16] extended the lattice
LSTM structure by using subword encoding that does not
rely on any external segment on CWS tasks, which gives
competitive results with previous state-of-the-art methods on
four segmentation benchmarks. Recently, Tian et al. [22] pro-
posed a neural framework, WMSEG, which uses memory
networks to incorporate wordhood information with several
popular encoder–decoder combinations for CWS task and
achieve the state-of-the-art performance on several datasets.
Tian et al. [23] proposed a neural model named TWASP
for joint CWS and POS tagging following the character-
based sequence labeling paradigm, where a two-way atten-
tion mechanism is used to incorporate both context feature
and their corresponding syntactic knowledge for each input
character. Moreover, Li et al. [14] exploited lattice LSTM,
which comprehensively utilizes both internal information and
external knowledge, to conduct the Chinese RE task. Yet,
this DAG structure fails to choose the right path sometimes,
which may cause the lattice model to degenerate into a
partial word-based model. Later, Liu et al. [14] explored four
different words encoding strategies to alleviate this issue.
Gui et al. [24] proposed a CNN-based NER model (LR-CNN)
that encodes matched words at different window sizes. More-
over, Gui et al. [25] and Sui et al. [26] converted lattice into
graph and used graph neural networks (GNNs) for encoding.
However, as sequence labeling tasks are very sensitive to
sentence structure, these methods still need to use LSTMs
as backbone encoder, which makes the models complicated.
Recently, Yan et al. [27] proposed an adapted transformer
encoder for Chinese NER. Ma et al. [19] constructed the soft-
lexicon feature to encoding the matched words, obtained from
the lexicon, into the representations of characters. More similar
to our work is the recent approach FLAT by [28], which
also applies multihead attention mechanism as their core
model. FLAT leveraged a flat lattice structure so that trans-
former can capture word information via position encoding.
Compared with FLAT, our proposed method view character
and word sequences as two modalities and can dynamically
fuse multimodal features with intramodality and intermodality
information.

B. Multimodal Learning

Multimodal learning is widely explored in computer vision
and NLP. A typical task is visual question answering
(VQA) [29], [30], which requires the model to perform
fine-grained semantic understanding of both the image and
the question. For example, Nguyen and Okatani [31] proposed
a dense symmetric co-attention architecture to form a hier-
archy for multistep interactions between an image–question
pair. Yu et al. [18] introduced a VQA model that consists
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of multiple modular co-attention layers cascaded in depth.
Gao et al. [17] proposed to dynamically fuse multimodal fea-
tures with intramodality and intermodality information flow.
Inspired by these advancements in this field, we aim to model
dense interactions over word–character lattice structure using
cascaded attention units and gating mechanism.

III. METHODOLOGY

The primary goal of this work is to model dense inter-
actions over word–character lattice for enhancing character
representations in several Chinese NLP tasks. Fig. 2 shows
the overall architecture of our LAN. We first construct the
word–character lattice structure by applying the soft-lexicon
feature strategy and then obtain fixed-dimensional represen-
tations of both character and word sequences (Section III-
A). Next, we utilize lattice-aligned attention (Section III-B)
to explicitly model dense interactions across different feature
spaces. Finally, we apply a conditional random field (CRF)
and a relation classifier to perform the decoding for several
Chinese NLP tasks (Section III-C).

A. Word–Character Lattice Representations

Since character sequences and matched words are viewed
as two different modalities, therefore, they are represented
as two sets of distributed representations. In the following,
we give detailed explanations on the construction of these
representations.

1) Character Representations: Character embeddings are
used to map discrete characters into continuous input vectors.
Given a Chinese input sentence s = [c1, c2, . . . , cn], where
ci represents the i th character, we map each character into a
real-valued embedding to express its semantic and syntactic
meaning. Each character ci is represented as follows:

xi = ec(ci ), xi ∈ R
d (1)

where ec denotes a pretrained BERT character embedding
lookup table. The character feature representations for NER
and CWS tasks can be obtained as follows:

X = [x1, x2, x3, . . . , xn] ∈ R
n∗d . (2)

For RE task, as pointed out in some previous studies [15],
[32], entity position embeddings are important for relation
classification. Therefore, we incorporate position embeddings
if experiments are carried out on the RE task. Here, entity posi-
tion embeddings denoted relative distances from the current
character to head and tail entities. These position embeddings
aim to specify entity pairs. Specifically, the relative distances
from the i th character ci to the two marked entities are denoted
as p1

i and p2
i , respectively. They are calculated as follows:

p1
i =

⎧⎨⎨
⎨⎩

i − b1, i < b1

0, b1 ≤ i ≤ e1

i − e1, i > e1

(3)

where b1 and e1 are the start and end indices of the head
entity, respectively. The computation of p2

i i is similar to (3).
In our work, we concatenate xi , p1

i , and p2
i as character feature

representations for RE task. Moreover, we exploit a linear
projection to transform dimension for facilitating calculation.
The final character feature representations for RE task are
calculated as follows:

X = linear
�
x �

1, x �
2, x �

3, . . . , x �
n

�
, ∈ R

n∗d (4)

x �
i = �

xi , p1
i , p2

i

�
. (5)

2) Word Representations: To unify the word–character rep-
resentation space, we use ci, j to denote a word in s, which
begins from the i th character to the j th character. Taking
the sentence in Fig. 1(a) for example, c1,3 refers to the
word “ (Nanjing City).” In the original lattice model,
the i th character is aligned with a set of matched words
wi = [ck,i , . . . , c j,i ], where k, j < i . For instance, the set
of matched words for the character “ (Bridge)” is w =
[c4,7, c6,7], which refers to “ (Yangtze River Bridge)”
and “ (Big Bridge),” respectively. However, as the number
of matched words for each character is dynamically changed
(the character “ (Big)” has no matching word), such lattice
structure is deprived of batch training, which makes the model
inefficient and difficult to deploy. To address this issue, we use
the soft-lexicon feature strategy [19], as shown in Fig. 1(b).
This strategy selects a fixed-dimensional vector, which is
composed of four word sets marked by the four segmentation
labels “BMES,” as the aligned word for each character ci .
Specifically, the word set B(ci ) consists of all lexicon matched
words on s that begin with ci . Similarly, M(ci ) consists of
all lexicon matched words in the middle of which ci occurs,
E(ci) consists of all lexicon matched words that end with ci ,
and S(ci ) is the single-character word comprised of ci . When
a word set is empty, we will set a special word “none” to it
to indicate this situation. Next, the aligned word wi for each
corresponding character ci is represented as

yi = [v(B(ci)); v(M(ci)); v(E(ci )); v(S(ci ))], yi ∈ R
4d (6)

where v denotes the function that maps a single word set to
a dense vector. The function works as

v(p) = 1

Z

�
w∈p

(z(w) + b)ew (7)

where z(w) denotes the frequency of wc occurring in the
statistic data set, wc is the character sequence constituting w,
ew represents a pretrained word embedding, and b denotes
the value that there are 10% of training words occurring
less than b times within the statistic data set. Z can be
computed by:

Z =
�

w∈(B�M�E�S)

z(w) + b. (8)

To facilitate calculation, we utilize a linear projection to
transform dimension, and finally, word feature representations
can be obtained as follows:

Y = Linear[y1, y2, y3, . . . , yn] ∈ R
n∗d . (9)
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Fig. 2. Overall flowchart of LAN. Word–character lattice structure is first constructed by characters and aligned words distributed representations. Then,
lattice-aligned attention, which contains three main components: 1) cross-lattice attention module; 2) a gated fusion unit; and 3) a self-lattice module, is designed
to explicitly capture dense interactions over word–character lattice structure. Finally, enhancing character representations is fed to decode layer for several
Chinese NLP tasks.

B. Lattice-Aligned Attention

In this section, we present our proposed lattice-aligned
attention for enhancing character representations, which con-
tains three main components: 1) cross-lattice attention module;
2) a gated fusion unit; and 3) a self-lattice module.

1) Cross-Lattice Attention: Cross-lattice attention module
[see Fig. 3(a)] aims to capture fine-grained correlations
between character and word feature representations, which is
a variant of recently proposed m-head cross-modal attention
mechanism [33], by treating X as queries and Y as keys and
values. It is capable of modeling dense interactions between
each pair of character and word feature, which is calculated
as

αwi(Y, X, X) = softmax

⎛
⎝

�
Y W Q

i

��
XW K

i

�T

√
d

⎞
⎠�

XW V
i

�
(10)

InterX→Y = [αw1(Y, X, X), . . . , αwm(Y, X, X)]Wm (11)

where αwi refers to the i th head of cross-modal attention and
W Q

i ∈ R
d∗d/m , W K

i ∈ R
d∗d/m , W V

i ∈ R
d∗d/m , and Wm ∈

R
d∗d are trainable parameter matrices. Then, we concatenate

InterX→Y with original character features, which are trans-
formed into the original dimension by a linear projections. The
information flow for updating character features �X is obtained
as follows:

�X = Linear[X; InterX→Y ]. (12)

Now, cross-lattice attention learns the pairwise relationship
between each paired sample 	xi , y j
 within X and Y and
fuses feature representations to generate word-aware character
features. Compared with original Lattice structures, which
have only access to its self-matched words, each character
can directly interact with all matched words in cross-lattice
attention.

2) Gated Fusion of Character–Word Pairs: We design a
gated fusion unit to integrate character and word features.
This unit trades off how much information the network is
taking from either word features or character features. This is
achieved by first computing a gating vector g ∈ R

n and then

using it to calculate the weighted-sum result from �X and Y .
The fused representation of character–word pairs is obtained
as follows:

hc = tanh
��XWc + bc

�
(13)

hw = tanh(Y Ww + bw) (14)

g = σ
�
([hc; hw])Wg

�
(15)

F = g�X + (1 − g)Y (16)

where Wc ∈ R
d∗d , Ww ∈ R

d∗d , Wg ∈ R
2d , bc ∈ R

d , and bw ∈
R

d are trainable parameters and σ is the sigmoid activation
function.

3) Self-Lattice Attention: Self-lattice attention with rela-
tive position encoding [see Fig. 3(b)] is designed to model
character-level self-correlations, which takes the fused features
F and relative position encoding P as inputs. It learns the pair-
wise relationship between the paired sample 	 fi , f j 
 within F ,
and outputs attended self-aware character features by using
weighted summation across all instances. This module is a
variant of multihead attention mechanism, which is calculated
as follows:

headi = softmax
��

QW Q
i

�
K [i ]T + P[i ]

��
V W V

i

�
(17)

O = �
head1; . . . ; headz

�
W o (18)

where Q, K , and V are all set as F , W Q
i ∈ R

d∗d/z , W K
i ∈

R
d∗d/z , W o ∈ R

d∗d are trainable parameters, K [i ] ∈ R
n∗d/z

is the i th partition of K , and P[i ] ∈ R
n∗n contains relative

position information of the i th partition.
To explicitly inform the module with positional information,

we utilize the relative position encoding method of which
details can be found from [27]. Suppose that t is the index
of target token, j is the index of context token, and Rt− j

is the bias term for certain distance and direction, and then,
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Fig. 3. Two proposed attention modules. Cross-lattice attention aims to model
dense interactions between each pair of character and word features, while
self-lattice attention is used to capture character-to-character self-correlations.
(a) Cross-lattice attention. (b) Self-lattice attention.

the relative position encoding P[i ] can be calculated as

d = Linear
�
dp

�
(19)

m = (2b ∗ z)/d (20)

Rt− j =
�
· · · sin

�
t − j

10000m

�
cos

�
t − j

10000m

�
· · ·

�T

(21)

P[i ]t, j =
�

QW Q
i

�
Rt− j + uK [i ]T

j + v RT
t− j (22)

where u, v ∈ R
d/z are learnable parameters. b in (17) is in the

range [0; d/(2z)], and z is the number of heads. To facilitate
calculation, we utilize a linear projections to transform position
embeddings dimension (dp).

In our network, the output O of the multihead attention will
be further processed by residual connection [34] and layer
normalization [35] followed by position-wise feedforward
networks, which can be computed as follows:

Rc = LayerNorm(O + F) (23)

FFN(Rc) = max(0; RcW1 + b1)W2 + b2 (24)

where W1, W2, b1, and b2 are learnable parameters. Similarly,
residual connection along with layer normalization is further
applied on FFN(Rc) to produce the final output features. Thus,
the self-lattice attention output can be denoted as

Sr = LayerNorm(FFN(Rc) + Rc). (25)

To increase model capacity, we stack l layers of self-lattice
attention operation to form a cascaded architecture. Finally,
the enhancing character representations are denoted as Srl ∈
R

n∗d , which is sent to the decoding layer for prediction in
Chinese NLP tasks.

C. Decoding and Training for Different Tasks

In this section, we describe how enhancing character repre-
sentations can be used for different NLP tasks. The enhancing
character representations are carried out on three Chinese NLP
tasks.

1) Chinese NER and CWS: Chinese NER and CWS can be
formalized as character-level sequence labeling tasks, in which
we need to predict a label for each character. A standard
CRF layer is used to predict character taggings, which takes
Srl as inputs and outputs a sequence of predicted tagging
probabilities A = [a1, . . . , an]. Let A� denotes an arbitrary
label distribution sequence (i.e., B-begin, I-inside, O-outside
(BIO) tagging scheme), the probability of the label sequence
A can be calculated using a softmax function

Pr
�

A|Srl
� =

�n
i=1 ϕn

�
an−1, an, Srl

�
�

a�∈A�
�n

i=1 ϕn
�
a�

n−1, a�
n, Srl

� (26)

where ϕn(an, an−1, L) = exp(Wn Srl + bn) is the scoring
function and Wn and bn are the weight vector and bias,
respectively. During training, we optimize model parameters
by minimizing the following conditional likelihood:

L(θ) = −logPr
�

A|Srl
�

(27)

where θ indicates all parameters of our model.
2) Chinese RE: Chinese RE aims to extract semantic

relations between entity pairs in natural language sentences.
A relation classifier is used to predict the single label for the
entire sentence. We first adopt a character-level attention to
integrate the enhancing character representations Srl into a
sentence representations Vh

Srl � = tanh
�
Srl

�
(28)

α = softmax
�

Srl �Wh

�
(29)

Vh = αSrl . (30)

Then, to compute the conditional probability of each rela-
tion, the sentence representations Vh is fed into a softmax
classifier

R = WoVh + b (31)

Pr(T |S) = softmax(R) (32)

where Wo ∈ R
k∗d is the transformation matrix and b ∈ R

k is
a bias vector. k indicates the total number of relation types,
and T is the estimated probability for each type. During
training, given all (M) training examples (Si ; T i), we optimize
the parameters of the model by minimizing the following
cross-entropy for RE

L(θ) =
M�

i=1

logPr
�
T i |Si , θ

�
(33)

where θ indicates all parameters of our model.

IV. EXPERIMENTS

A. Experimental Setup

To evaluate the performance of our model, we conduct
experiments on three Chinese NLP tasks and nine public
benchmark datasets, of which detailed statistics are shown
in Table I.
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TABLE I

STATISTICS OF NINE CHINESE NLP DATASETS

1) Chinese NER Task: The Weibo NER dataset [36] is
drawn from the Chinese social media network Sina Weibo.
The MSRA dataset [37] comes from news written in simplified
Chinese. The Chinese resume dataset [13] contains resumes
crawled from SinaFinance text.

2) CWS Task: We evaluate our model on four standard
CWS datasets: PKU, MSR, AS, and CITYU. They are taken
from the SIGHAN 2005 bake-off [38] with standard data
split. AS and CITYU are in traditional Chinese characters.
Following previous studies [22], [39], we convert traditional
Chinese characters in AS and CITYU into simplified ones.

3) Chinese RE Task: We take two publicly available Chi-
nese RE datasets to evaluate the performance of our model.
The first one is the Chinese SanWen [8], which contains
sentences with annotated relations extracted from 837 Chinese
literature articles. The second one is the FinRE dataset [15].
This dataset aims to extract 44 distinguished relationships from
financial news in Sina Finance.

B. Implementation Details

We utilize the BERT embedding as our character embed-
dings. The BERT in the experiment is “BERT-wwm” released
in [40]. We use the word embedding dictionary [41] that
contains over 8000k Chinese characters and words as default
lexicon in our model. As for hyperparameter configurations,
the sizes of character embeddings are 768, position embed-
dings are 25, and word embeddings are 200 by default,
and the dimensionality of hidden size is 768. For attention
settings, the head number of cross-lattice attention and self-
lattice attention is 8 and 4, respectively, for all datasets.
We set the number of self-lattice attention layers l as 2 by
default. To train the model, we use the stochastic gradient
descent (SGD) optimizer with a learning rate of 0.0007 on
all datasets. The training takes 100 epochs until convergence.
We adopt standard F1-score and area under the curve (AUC)
to evaluate the model. All experiments were conducted on a
single NVIDIA 1080Ti GPU.

C. Overall Results

Tables II–IV show the performances on three Chinese NLP
tasks with nine public datasets. Generally, our method LAN
consistently outperforms all baselines on all three tasks, which

TABLE II

MAIN RESULTS (F1) FOR NER TASK

TABLE III

MAIN RESULTS (F1 AND AUC) FOR RE TASK. † DENOTES THE RESULTS
THAT ARE PRODUCED BY IMPLEMENTATION IN [14]

demonstrates the effectiveness and universality of the proposed
approach. Moreover, lattice-based models significantly out-
perform character-level models on all datasets from different
tasks, which indicates that incorporating the word information
plays a vital role in the Chinese NLP tasks.

In detail, on the three datasets of NER task, it can be
seen that our model achieves the state-of-the-art performance
by obtaining 96.67, 96.41, and 71.27 F1. Compared to the
latest FLAT+BERT model, our approach slightly increases by
0.81% and 0.32% on Resume and MSRA datasets, respec-
tively. However, it can be found that our proposed model
significantly outperforms FLAT+BERT by 2.72% F1 on
Weibo. When compared to the lattice LSTM, we find stronger
performance improvement with respect to Resume (+2.21%),
MSRA (+3.23%), and Weibo (+12.48%). Besides, introduc-
ing word boundary information into the encoding of char-
acter sequences improves the RE performance on FinRE
and SanWen datasets by 2.09 and 4.24 points and 1.94 and
8.99 points in F1 and AUC, respectively. For the CWS task,
we obtain 96.69%, 98.61%, 97.02%, and 98.13% F1 on PKU,
MSR, AS, and CITYU datasets, respectively. Compared to the
lattice LSTM, our approach significantly increases by 1.68%,
1.49%, 1.39%, and 1.18% on four datasets.

D. Ablation Study

We conduct an ablation study on the Weibo, SanWen, and
PKU test sets to investigate the influence of different modules
in our proposed LAN model in Table V. Modules are tested
in five ways.
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TABLE IV

MAIN RESULTS (F1) FOR CWS TASK. ∗ DENOTES THE RESULTS THAT
ARE PRODUCED BY OUR IMPLEMENTATION

TABLE V

ABLATIONS ON WEIBO, SANWEN, AND PKU TEST SETS

1) We remove the cross-lattice attention module and only
use the gate fusion unit and self-lattice attention module
for encoding. We find that the F1-score obviously
decreases by 1.96, 1.52, and 0.66 on three datasets,
showing the beneficial effect of modeling dense inter-
actions among word–character feature spaces.

2) To test the effectiveness of gated fusion, we replace the
gating mechanism with simple feature addition (�X + Y
is fed to self-lattice attention instead of F) and find that
the performance drops to 69.02 (−2.14%), 88 (−1.73%),
and 96.21 (−0.73%) F1 on three datasets. We think that
the reason is that too much unrelated information hinders
the learning process.

3) We attempt to delete the self-lattice attention and directly
use the fused representation of character–word pairs (F)
for decoding. We observe that the F1 significantly drops
by 1.35%, 0.83%, and 0.46% on three datasets, indicat-
ing that capturing self-correlations among characters is
critical for enhancing character representations.

4) Removing both attention modules and using character
representations (X) for decoding leads to further worse
results on Weibo (−3.61%), SanWen (−2.72%), and
PKU (−1.16%), which suggests that the proposed atten-
tion modules play a vital role in enhancing character
representations.

5) We utilize the pretrained character embeddings used
in [41] instead of BERT embeddings. It leads to sig-
nificantly worse results on Weibo (−3.94%), SanWen
(−4.43%), and PKU (−0.71%), which suggests that
BERT embeddings can provide better semantic repre-
sentations of character sequences.

E. Performance Against Efficiency

To explore the efficiency of our model, we conducted exper-
iments of inference time on all datasets. Tables VI and VII

TABLE VI

RELATIVE DECODING-TIME SPEED OF DIFFERENT MODELS ON CWS
TASK. LATTICE LSTM CAN ONLY RUN WITH BATCH SIZE = 1, WHILE

OUR LAN MODEL RUNS WITH BATCH SIZE = 16

list the relative decoding time on all test sets, compared to
the lattice LSTM. As we can see, our LAN not only achieves
better F1-score results than the baseline model but also is much
faster. Specifically, LAN runs an average of 6.28 times faster
than lattice LSTM. The reason is that the lattice LSTM extends
the already slow LSTM to a DAG structure by adding word
level. However, our model is based on multihead attention,
which can make better use of GPU parallelism. Moreover,
due to the restriction of DAG structure and variable-sized set
of matched words, lattice LSTM is nonbatch parallel, while
LAN can leverage parallel computation of GPU.

To further investigate the influence of sentence length,
we analyze the performance of our LAN model and other
baseline approaches with respect to different grouped sentence
lengths on the Weibo dataset, which is shown in Fig. 4.
We partition the sentence length into five groups ([0–19],
[20–39], [40–59], [60–79], [≥80]). We can observe that LAN
consistently runs faster than compared baselines under dif-
ferent sentence lengths. Especially, when the sentence length
is less than 20, LAN (batch size = 16) runs 12.57, 13.53,
and 1.87 times faster than lattice LSTM, LR-CNN, and LGN
(batch size = 16), respectively. However, the speed gap
becomes smaller as the sentence length increases. We think
that the reason is that the longest sentence becomes an outlier
during batch prediction and it slows down the whole decoding
process. Moreover, we can find that FLAT outperforms our
proposed method in terms of efficiency. The reason is that
our proposed method cascaded attention units and gating
mechanisms. In summary, the LAN model firmly outperforms
current RNN-based (lattice LSTM), CNN-based (LR-CNN),
and graph-based methods (LGN) in terms of efficiency.

F. Lexicon and Embeddings

To analyze the influence of lexicon and pretrained word
embeddings (direction skip-gram model training), we evaluate
some comparative experiments by using the same word lex-
icon with and without pretrained embeddings on the Weibo
test set. Moreover, to further analyze the contribution from
word lexicon, we also conduct experiments with character-
only information by running self-lattice attention. To make
the comparison fair, we set all hyperparameters unchanged.
The result is shown in Fig. 5. As can be seen from the
figure, replacing pretrained word embeddings with randomly
initialized embeddings changes the performance: the F1-score
decreases by 2.94%. Compared with models incorporating
lexicons, the performance of the model without lexicons is
seriously degraded, and the F1-score decreases by 4.05%.
These results demonstrate the excellent contribution from word
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TABLE VII

RELATIVE DECODING-TIME SPEED OF DIFFERENT MODELS ON NER AND RE TASKS. LATTICE LSTM CAN ONLY RUN WITH BATCH SIZE = 1, WHILE
OUR LAN MODEL RUNS WITH BATCH SIZE = 16

Fig. 4. Speed against sentence length. Sen/s denotes the number of sentences
processed per second. Due to the restriction of the DAG structure or variable-
sized lexical words set, lattice LSTM and LR-CNN are nonbatch parallel.

Fig. 5. Comparison F1-scores between LAN with and without pretrained
word embeddings and lexicon on the Weibo test set. “No lexicon” denotes only
character information that is fed to self-lattice attention. “Initialized emb” and
“Skip-gram emb” denote the word embeddings that are obtained by randomly
initialized and direction skip-gram model training, respectively.

lexicon and pretrained word embeddings and also explains the
effectiveness of our model in different domains.

G. Qualitative Analysis

To intuitively verify that our model can better utilize
fine-grained correlations in word–character spaces, we analyze
two examples from the Weibo test set, as shown in Table VIII.
In the first case, due to the inherently sequential nature, the
character “ (Nan)” has only access to its self-matched words
“ (Hunan)” in the lattice LSTM. Hence, the lattice LSTM
incorrectly recognizes “ (Hunan)” as a geo-political
entity. However, LAN can correctly detects the organization
entity “ (Hunan Radio and Tele-
vision Advertising Center).” The reason is that LAN can

Fig. 6. Visualizations of the learned attention maps of the cross-lattice
attention over character–word pair on case 1.

Fig. 7. Visualizations of the learned attention maps of the cross-lattice
attention over character–word pair on case 2.

fully capture fine-grained correlations between characters and
matched words, such as a word “ (Advertising Cen-
ter)” corresponds to the character “ (Guang).” In the second
case, there is an organization entity “ (Huakai Com-
pany).” It is difficult for lattice LSTM to detect the uncommon
entity “ (Huakai Company)” since it lacks cross-
modal information, which wrongly recognizes “
(Huakai Company)” as nonentity. However, LAN can exploit
cross-modal information. For example, the fourth character “
(Division)” has access to words “ (Establish a company)
and “ (Flowers bloom)” in “BMES2” and model close
interaction among them. These results indicate that dense
interactions between each pair of character and word feature
are indispensable and can help model better understand the
contextual semantics.
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TABLE VIII

EXAMPLES OF WEIBO DATASET. CONTENTS WITH RED AND BLUE COLORS REPRESENT CORRECT AND INCORRECT ENTITIES, RESPECTIVELY

TABLE IX

ERROR ANALYSIS ON WEIBO DATASET. CONTENTS WITH RED AND BLUE COLORS REPRESENT CORRECT AND INCORRECT ENTITIES, RESPECTIVELY

Moreover, we visualize the cross-lattice attention weights
on two cases in Figs. 6 and 7. It is first observed that the
attention map of case 1 forms vertical stripes, and the orga-
nization entity “ (Hunan Radio and
Television Advertising Center)” involves characters to obtain
large attention weights. This reveals that the attended features
tend to use the feature of “ (Hunan
Radio and Television Advertising Center)” for reconstruction.
Then, we can find that the attention map of case 2 tend to
focus on columns of characters “ (Flower),” “ (Open),”
“ (Public),” and “ (Division).” This can be explained
by the fact that “ (Huakai Company)” have been
reconstructed as the most important information in input
features.

H. Error Analysis

To gain further insights about our best-performing model,
we conducted an error analysis (see Table IX). We can observe

that “ (Deng Chao)” and “ (Chi Xiao Ao)” can be
can correctly be detected as person entities by our LAN on
examples 1 and 2. However, our LAN incorrectly recognizes
“ (Famous arrest)” and “ (Ding ding)” as person
entities. Moreover, the overall performance on WeiboNER
dataset is relatively low. We think that the reason may be that
social media texts do not follow strict syntactic rules. Besides,
too many words of information still bring interference to a
certain extent, although we used the gated fusion unit.

V. CONCLUSION

In this article, we propose an LAN for enhancing character
representations, which aims to model dense interactions over
word–character lattice structure. To achieve this, we introduce
a cross-lattice attention module to capture fine-grained cor-
relations between each pair of character and word feature
and present a gated fusion unit and a self-lattice attention
module to model self-correlations inside character sequences.
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We evaluate the proposed model on three Chinese NLP tasks.
The results show that LAN achieves new state-of-the-art
performance compared to other competing approaches.
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